```
Easy to understand difference:
```

Permutation

- Permutation is the arrangement of items in which **order matters**
- Number of ways of **selection and arrangement of items** in which Order Matters

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

Combination

- Combination is the selection of items in which order does not matters.
- Number of ways of selection of items in which Order does not Matters

$$\left[{}^{n}C_{r} = \frac{n!}{r!(n-r)!}\right]$$

For other important formulas see different case formulas and concepts.

Important Concepts Permutation and Combination

Permutation and Combination Formulas

• Number of all permutations of n things, taken r at a time, is given by

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$
nPr = (n-r)!n!

• Number of all combinations of n things, taken r at a time, is given by ${}^{n}C_{r} = \frac{n!}{(r)!(n-r)!}$ nCr = (r)!(n-r)!n!

Points to remember

- Factorial of any negative quantity is not valid.
- If a particular thing can be done in m ways and another thing can be done in n ways, then • Either one of the two can be done in *m* + *n* ways and
 - Both of them can be done in **m** × **n** ways
- 0! = 1
- 1! = 1
- If from the total set of n objects and ' p_1 ' are of one kind and ' p_2 ' and ' p_3 ' and so on till p_r are others respectively then

$${}^{n}P_{r} = \frac{n!}{p_{1}! \times q_{2}! \times \dots p_{r}!} \mathsf{n}\mathsf{Pr} = \mathsf{p1!xq2!x.....} \mathsf{pr!n}$$

•
$$^{n}P_{n} = n!^{\perp}$$

- ${}^{n}c_{n} = 1$ ${}^{n}c_{0} = 1$

•
$$n_{c_r} = n_{c_{(n)}}$$

• ${}^{n}c_{0} + {}^{n}c_{1} + {}^{n}c_{2} + {}^{n}c_{3} + ...{}^{n}c_{n} = 2^{n}$

Distribution of		How many balls			
		boxes can contain			
k Balls	into n Boxes	No Restrictions	≤ 1 (At most one)	≥ 1 (At least one)	= 1 (Exactly one)
Distinct	Distinct	n ^k (formula 1)	ⁿ P _k (formula 2)	S(k,n) × n! (formula 3) (Not Imp)	ⁿ P _n = n! if k = n 0 if k ≠ n (formula 4)
Identical	Distinct	^(k+n-1) C _(n-1) (formula 5)	ⁿ C _k (formula 6)	^(k-1) C _(n-1) (formula 7)	1 if k = n 0 if k ≠ n (formula 8)